489 research outputs found

    Efficient key management in wireless sensor network security

    Get PDF
    Wireless sensor network is a multi-hop ad hoc network formed by a large number of low-cost micro-sensor nodes which communicate through radio channels. It is widely used in many areas in modern society and attracts a lot of attention from researchers. This research is on wireless sensor network security and it focuses on key management in hierarchical wireless sensor networks. Through literature review, the drawback and weakness of existing key management schemes are analyzed from various aspects including key establishment, key distribution, key update, authentication and node operation mechanism. Assessment criteria for key management scheme are proposed under different requirements and constraints of wireless sensor networks. The security criteria cover keying model, key distribution, key update, node operation and resilience. For cluster based hierarchical wireless sensor networks, an assistant node is introduced in a cluster to deal with the situation of cluster head compromise and to keep the member nodes securely staying in the network. With introduction of assistant nodes, a complete secure efficient hierarchical key management scheme (SEHKM) for wireless sensor network is proposed. The scheme supports three types of keys and the big improvement over existing key management schemes is on group key update, which is based on pseudo-random numbers and group Diffie-Hellman. The analysis and evaluation have shown that that SEHKM offers strong security with efficient operation from energy consumption point of view

    Class of Quadratic Almost Bent Functions That Is EA-Inequivalent to Permutations

    Get PDF
    The permutation relationship for the almost bent (AB) functions in the finite field is a significant issue. Li and Wang proved that a class of AB functions with algebraic degree 3 is extended affine- (EA-) inequivalent to any permutation. This study proves that another class of AB functions, which was developed in 2009, is EA-inequivalent to any permutation. This particular AB function is the first known quadratic class EA-inequivalent to permutation

    Making and identifying optical superposition of very high orbital angular momenta

    Full text link
    We report the experimental preparation of optical superpositions of high orbital angular momenta(OAM). Our method is based on the use of spatial light modulator to modify the standard Laguerre-Gaussian beams to bear excessive phase helices. We demonstrate the surprising performance of a traditional Mach-Zehnder interferometer with one inserted Dove prism to identify these superposed twisted lights, where the high OAM numbers as well as their possible superpositions can be inferred directly from the interfered bright multiring lattices. The possibility of present scheme working at photon-count level is also shown using an electron multiplier CCD camera. Our results hold promise in high-dimensional quantum information applications when high quanta are beneficial.Comment: Submitted for publication consideration (4 figures
    corecore